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A fully three-dimensional (3D) model of an electron beam
focused by a periodic permanent magnet (PPM) stack has been
developed. First, the simulation code MAFIA was used to
model a PPM stack using the magnetostatic solver. The exact
geometry of the magnetic focusing structure was modeled;
thus, no approximations were made regarding the off-axis
fields. The fields from the static solver were loaded into the 3D
particle-in-cell (PIC) solver of MAFIA where fully 3D
behavior of the beam was simulated in the magnetic focusing
field. The PIC solver computes the time-integration of
electromagnetic fields simultaneously with the time integration
of the equations of motion of charged particles that move under
the influence of those fields. Fields caused by those moving
charges are also taken into account; thus, effects like space
charge and magnetic forces between particles are fully
simulated [']. The electron beam is simulated by a number of
macro-particles. These macro-particles represent a given
charge Q amounting to that of several million electrons in order
to conserve computational time and memory. Particle motion
is unrestricted, so particle trajectories can cross paths and move
in three dimensions under the influence of 3D electric and
magnetic fields. Correspondingly, there is no limit on the initial
current density distribution of the electron beam, nor its density
distribution at any time during the simulation.

Simulation results including beam current density, percent
ripple and percent transmission will be presented, and the
effects current, magnetic focusing strength and thermal
velocities have on beam behavior will be demonstrated using
3D movies showing the evolution of beam characteristics in
time and space. Unlike typical beam optics models, this 3D
model allows simulation of asymmetric designs such as non-
circularly symmetric electrostatic or magnetic focusing as well
as the inclusion of input/output couplers.

' The MAFIA Collaboration, MAFIA TS3 the 3D-PIC Solver, December,
1996.



This report is a preprint of an article submitted to a journal for m \ \ w
publication. Because of changes that may be made before formal

publication, this preprint is made available with the understanding
@ that it will not be cited or reproduced without the permission of the
author.

Glenn Research Center

Three-dimensional Simulations of Electron
Beams Focused by Periodic Permanent
Magnets

Carol L. Kory
ANALEX Corporation/NASA Glenn Research Center
Cleveland, Ohio
ckory@lerc.nasa.gov

ICOPS '99 IEEE International Conference on Plasma Science
June 20-24, 1999



@\ Summary
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€ Importance of Efficient Electron Beam Focusing
¢ Model - Hughes MMPM TWT
¢ MAFIA model

€ Periodic Permanent magnet (PPM) stack - Static solver
€ Electron Optics model - PIC solver
€ Thermal velocity model

€ Investigate
€ Percent ripple
€ Percent transmission
€ Current density
€ Tunnel length



@\ Electron Beam Focusing
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¢ Excessive growth in beam diameter leads to:
¢ backward wave oscillations
¢ premature saturation

¢ Electron beam/RF circuit interception causes:
+ excessive circuit heating
¢ decreased efficiency

¢ These imply serious reduction in tube performance
€ 3D Model allows:

€ Asymmetric designs
@ Inclusion of Couplers
¢ Input/Output sections

€ More accurate spent beam data for collector design



€  Hughes 8916H MMPM TWT
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Operating parameters for the Hughes 8916H

helical TWT
Frequency (GHz) 18-40
Vo (KV) 7.6
I, (mA) 81.0
Perveance (10 0.12
b/a 0.5
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Algorithm

MAFIA Code

o Solution of MAxwell's equations by the Finite-Integration-

¢ Three-Dimensional Electromagnetic Particle-in-Cell
Simulation Code

¢ Data Accepted Directly from Standard Engineering Design

Software Mesh
Generator |
Static Solver Eigenmode | |[Particle-in-Cell| | Time Domain || Eddy Current
Solver Solver Solver Solver

Post Processor




3D PPM Stack Model

Iron Polepiece

\.mSNOc: Magnet
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Cross-sectional view and top view of PPM stack

Mesh Generator — . .
Model 3D PPM Stack ¢ Provided B-H curve used for iron

¥ pole pieces

Static Solver — ¢ Fixed magnetization and

» Define material properties ermeability used for magnets
e Calculate Magnetic flux density, B P y &




@\ Longitudinal Magnetic Flux Density, Bz
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Simulation
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Simulated and analytical longitudinal component of
magnetic flux density B, on the PPM stack central axis
versus z/L
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Magnetic focusing
__________u/_._j_

\

\

. ¥+ i 1 1 +r 1 1 i 1 1 1 1 1
/.m_mnsdz beam

Mesh Generator -

3D Electron Optics Model

¢ Electron beam simulated by macro-particles

¢ Each amounts to several million electrons

¢ Particle motion unrestricted
¢ Move in 3D under influence of 3D fields

¢ No limit on current density distribution or
emission direction of electron beam
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Model 3D beam tunnel 19.4 -
¥ 19.2 -
Particle-in-Cell Solver — o 7
e Load B from PPM stack from static W 1887
solver 2 1007
e Define material properties “M.“ 1
e Define emission properties of A.m
electron bunch 0
e Calculate particle motion under

influence of self- and static fields
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Percent ripple versus number of particles




Thermal velocity model

Glenn Research Center ¢ Radial transverse velocities assumed

¢ Distribution based on Gaussian probability function with

standard deviation

r. [kT
o=-—",—

k = Boltzman’s constant
m = mass of electron

T = cathode temperature in Kelvin
Iy = beam radius containing 95% of beam current
r, = cathode disk radius
¢ Ejection angle normal to the emission plane determined by
u

)
Z
¢ Thus, particle trajectories are emitted across beam cross section with random

distribution of ejection angle 6 according to mentioned Gaussian probability
function.

U
0 =tan™'(—




@\ Percent Ripple -Comparison to
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Percent ripple for various values of space charge
parameter [3 at Brillouin focusing



@ Percent Ripple
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Percent ripple for 81mA beam with and without
initial transverse velocities using various
focusing strengths



Percent Transmission
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Percent transmission for S1ImA beam for various values of
flux density with and without initial transverse
velocities
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